
Mechanism design for fractional scheduling on
unrelated machines

George Christodoulou1, Elias Koutsoupias2, and Annamária Kovács1

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
{gchristo,panni}@mpi-inf.mpg.de

2 Department of Informatics, University of Athens
elias@di.uoa.gr

Abstract. In this paper, we consider the mechanism design version of
the fractional variant of the scheduling problem on unrelated machines.
We give a lower bound of 2− 1/n for any fractional truthful mechanism,
while we propose a truthful mechanism that achieves approximation of
1 + (n− 1)/2, for n machines. We also focus on an interesting family of
allocation algorithms, the task-independent algorithms. We give a lower
bound of 1 + (n − 1)/2, that holds for every (not only monotone) al-
location algorithm of this class. Under this consideration, our truthful
independent mechanism is the best that we can hope from this family of
algorithms.

1 Introduction

Mechanism design is an important branch of Microeconomics and in particular
of Game Theory. The objective of a mechanism designer is to implement a goal,
e.g., to sell an object to a set of potential buyers. The problem derives from the
fact that the designer may not be informed about some parameters of the input.
These values are controlled by selfish agents that may have incentive to misinform
the designer, if this can serve their atomic interests. The mechanism design
approach concerns the construction of a game, so that the outcome (equilibrium)
of the game is the goal of the designer.

Task scheduling is one of the most important and well-studied problems in
Computer Science, as it often arises, in numerous forms, as a subproblem in
almost every subfield of Computer Science. One of its most classical and general
variants is the scheduling on unrelated machines. In this setting, there are n
machines3 and m tasks, and the processing time needed by machine i to perform
task j is determined by the tij entry of an n×m matrix t. A common objective
is to assign the tasks to the machines in such a way, that the maximum load of
the machines (i.e., the makespan) is minimized.

3 In Game-theoretic settings n is used to denote the number of the players, while in
scheduling literature, usually m is used to denote the cardinality of the machines set.
In our case, the aforementioned sets coincide. We prefer to use the former notation,
in order to be compatible with the original paper [20] by Nisan and Ronen.



Nisan and Ronen [20] initiated the study of the mechanism design version of
scheduling on unrelated machines. In this form of the problem, the processing
times that a machine i needs in order to execute the tasks (vector ti), are private
values, known only to the corresponding machine. The machines are controlled
by selfish agents that aim at satisfying their own interests, and in the particular
case they are unwilling to perform any task. In order to motivate them to reveal
their actual values, the classical approach adopted by mechanism design, is to
introduce side payments, i.e., to hire the machines. A mechanism for this problem
consists of an allocation algorithm and a payment scheme. We are interested in
bounding the approximation ratio of the mechanism’s allocation algorithm.

In the classical version of the problem, each task must be assigned to ex-
actly one machine. The LP-relaxation of the problem, also known as fractional
scheduling, concerns the version where instead of being assigned to a single ma-
chine, each task can be splitted among the machines. Fractional variations of
combinatorial problems have been studied extensively in network optimization,
e.g., routing splittable traffic or flow problems.

The fractional scheduling problem can be formulated as a linear program
and hence it can be solved in polynomial time. LP-relaxation turns out to be
a useful tool in the design of approximation algorithms (both deterministic and
randomized)4. Furthermore, it turned out to be a powerful technique to pro-
vide randomized truthful mechanisms (see e.g. [16, 3]). It is natural to ask how
powerful LP-relaxation is in the mechanism design framework.

In this paper we consider the mechanism design version of the fractional
scheduling on unrelated machines. An interesting fact is that while the offline
problem is polynomially solvable, it turns out that in the mechanism design
version of the problem it cannot be approximated within a constant factor, even
by non-polynomial mechanisms (see Sec. 3). This means, that the additional
properties that the allocation of a mechanism needs to satisfy in contrast to a
simple algorithm (cf. Sec. 2), do not allow us to achieve an exact solution, even in
non-polynomial time. Lower bounding fractional mechanisms is a nice approach
to lower bound randomized (and deterministic) mechanisms of the integral case,
as splitting a job is clearly a more radical solution than randomly assigning it.

We are particularly interested in a family of mechanisms that we call task-
independent. A task-independent algorithm is any algorithm that in order to
allocate task j, only considers the processing times tij , that concern the partic-
ular task. Such a consideration is motivated by the fact that (to the best of our
knowledge) all the known positive results for this problem (e.g., see the mecha-
nisms in [18, 20]), and in addition the mechanism that we propose in this paper,
belong to this family of mechanisms. The question that we address here is: how
far can we go with task-independent algorithms?

1.1 Related Work

Scheduling on unrelated machines is a classical NP-hard problem. Lenstra et
al. [17] gave a 2-approximation polynomial time algorithm, while they also proved

4 In fact, it has been used in order to obtain the 2-approximation algorithm in [17].



that the problem cannot be approximated (in polynomial time) within a factor
less than 3/2. The mechanism design version of the problem originates in the
seminal work of Nisan and Ronen [20]. They gave a n-approximation truthful
mechanism and a lower bound of 2, while they conjectured the actual bound to
be n. Christodoulou et al. [9] improved the lower bound to 1+

√
2. Narrowing the

gap between the lower and the upper bound still remains a big open question.
Randomization usually reduces the approximation ratio and that is also the

case for this problem. Nisan and Ronen [20] proposed a randomized mech-
anism for 2 machines with approximation ratio 7/4. Recently, Mu’alem and
Schapira [18] generalized this mechanism for n machines and achieved a 7n/8
randomized truthful mechanism. In the same work, they also gave a lower bound
of 2−1/n for randomized mechanisms. Notice that all the known lower bounds for
this problem (both deterministic and randomized) follow due to the infrastruc-
ture of truthful mechanisms, and do not reside in any computational assumption;
consequently they hold even for non polynomial time mechanisms.

Scheduling on related machines, from the mechanism design point of view,
was first studied by Archer and Tardos [4]. In this variant of the problem, the
private parameter for each machine, is a single value (its speed). Archer and Tar-
dos [4] characterized the class of truthful mechanisms for this setting, in terms
of a monotonicity condition of the mechanism’s allocation algorithm. A simi-
lar characterization for one-parameter mechanism design problems (single item
auction) can also be found in Myerson [19]. For this problem, it turns out that
the optimal allocation algorithm can be modified to be a truthful mechanism.
Archer and Tardos [4] gave a randomized truthful 3-approximation algorithm,
which was later improved to a 2-approximation by Archer [2]. Andelman et al. [1]
gave the first deterministic polynomial mechanism for the problem, with an ap-
proximation ratio of 5. Kovács [13] improved this by giving a 3-approximation
deterministic truthful mechanism, while finally the ratio was reduced to 2.8 [14].

In the field of Combinatorial Auctions, a wide variety of combinatorial opti-
mization problems has been considered from the mechanism design point of view
(see for example [3, 6, 8, 10, 5, 11] and references within). In this context, Saks
and Yu [21] characterized the class of truthful mechanisms for combinatorial
auctions with convex valuations, generalizing results of [7, 12, 15].

1.2 Our Results

In this paper, we consider the mechanism design version of fractional scheduling
on unrelated machines. We give a 2−1/n lower bound on the approximation ra-
tio, that can be achieved by any truthful mechanism. This result shows that even
in the case of such a problem, for which the offline version can be exactly solved
in polynomial time, its mechanism design analog may turn out to be impossi-
ble to approximate, even by non-polynomial mechanisms. Notice that giving a
lower bound for fractional mechanisms is another way to obtain lower bounds for
randomized mechanisms for the integral case. Consequently, our 2 − 1/n lower
bound extends the lower bounds in [18] to the class of fractional mechanisms.
Note that a fractional mechanism is more powerful than a randomized mecha-
nism for the integral case, since it has the flexibility to split a task into many



machines, while a randomized mechanism, finally, has to assign the whole task
to a machine, and this affects its approximation ratio.

In the positive direction, we give a truthful mechanism with approximation
ratio 3/2 for 2 machines, which matches our lower bound. This is the first new
tight bound that we have for any variant of the problem, after the tight bound
of 2 in the integral case, obtained for 2 machines in [20]. The generalization of
our mechanism for n machines gives us an approximation ratio of 1 + (n− 1)/2.

Next we turn our attention to a family of mechanisms that we call task-
independent. This family consists of mechanisms, where the decision for the
assignment of a task, depends only on the processing times that concern the
particular task (time column w.r.t. the task). Considering task-independence is
motivated by the fact that all known ’reasonable’ deterministic and randomized
mechanisms for this problem are task-independent. Furthermore, this sort of in-
dependence has attractive properties: easy to design by applying methods for
one-parameter auctions, fits well with on-line settings, where tasks may appear
one-by-one. It is natural to ask if there is room for improvement on the approx-
imation ratio by use of such mechanisms. We extend this question for the class
of task-independent algorithms that need not satisfy the additional properties
imposed by truthfulness. We give a lower bound of 1 + (n− 1)/2 on the approx-
imation ratio of any algorithm that belongs to this class. Our mechanism is also
task-independent, and hence is optimal over this family of algorithms.

2 Problem Definition

In this section, we fix the notation that we will use throughout this paper,
furthermore we give some preliminary definitions and cite relevant results.

There are n machines and m tasks. Each machine i ∈ [n] needs tij units of
time to perform task j ∈ [m]. We denote by ti the row vector corresponding
to machine i, and by tj the column vector of the running times of task j. We
assume that each machine i ∈ [n] is controlled by a selfish agent that is unwilling
to perform any operation, and vector ti is private information known only to her.
The vector ti is also called the type of agent i.

Any mechanism defines for each player i a set Ai of available strategies, the
player (agent) can choose from. We will consider direct revelation mechanisms,
i.e., Ai = Ti for all i, meaning that the players strategies are to simply report
their types to the mechanism. In general, Ti consists of all possible vectors bi ∈
Rm

+ , that is, a player may report a false vector bi 6= ti, if this serves his interests.
A mechanism M = (x, p) consists of two parts:

An allocation algorithm: The allocation algorithm x, depends on the players’
bids b = (b1, . . . , bn), with 0 ≤ xij ≤ 1 denoting the fraction of task j that is
assigned to the machine i. In the unsplittable case, these variables take only
integral values xij = {0, 1}. Every task must be completely assigned to the
machines’ set, so

∑
i∈[n] xij = 1, ∀j ∈ [m].

A payment scheme: The payment scheme p = (p1, . . . , pn), also depends on
the bid values b. The functions p1, . . . , pn stand for the payments that the
mechanism hands to each agent.



The utility ui of a player i is the payment that he gets minus the actual
time that he needs in order to execute the set of tasks assigned to her, ui(b) =
pi(b)−

∑
j∈[m] tijxij(b). We are interested in truthful mechanisms. A mechanism

is truthful, if for every player, reporting his true type is a dominant strategy.
Formally,

ui(ti, b−i) ≥ ui(t′i, b−i), ∀i ∈ [n], t′i ∈ Ti, b−i ∈ T−i ,

where T−i denotes the possible types of all players disregarding i.
We remark here, that once we adopt the solution concept of dominant strate-

gies, focusing on direct revelation and in particular on truthful mechanisms is
not at all restrictive, due to the Revelation Principle. Roughly, the Revelation
Principle states that any problem that can be implemented by a mechanism with
dominant strategies, can also be implemented by a truthful mechanism (cf. [20]).

The objective function that we consider, in order to evaluate the perfor-
mance of a mechanism’s allocation algorithm x, is the maximum load of a
machine (makespan), with respect to the real time matrix t. When we re-
fer to the makespan of a mechanism, we mean the makespan of its alloca-
tion algorithm with respect to the input t, and we denote it by Mech(t) =
maxi∈[n]

∑
j∈[m] tijxij . Since we aim at minimizing the makespan, the optimum

is Opt(t) = minx maxi∈[n]

∑
j∈[m] tijxij . We are interested in the approximation

ratio of the mechanism’s allocation algorithm. A mechanism M is c-approximate,
if c ≥ Mech(t)/Opt(t) ∀t ∈ T .

Although our mechanism is polynomially computable, we do not aim at min-
imizing the running time of the algorithm; we are looking for mechanisms with
low approximation ratio. Our lower bounds also don’t make use of any compu-
tational assumptions.

A useful characterization of truthful mechanisms in terms of the following
monotonicity condition, helps us to get rid of the payments and focus on the
properties of the allocation algorithm.

Definition 1. An allocation algorithm is called monotone5 if it satisfies the
following property: for every two sets of tasks t and t′ which differ only on
machine i (i.e., on the i-th row) the associated allocations x and x′ satisfy
(xi − x′i) · (ti − t′i) ≤ 0, where · denotes the dot product of the vectors, that
is,
∑

j∈[m](xij − x′ij)(tij − t′ij) ≤ 0.

The following theorem states that every truthful mechanism has to satisfy
the monotonicity condition. It was used by Nisan and Ronen [20] in order to
obtain their lower bounds.

Theorem 1. Every truthful mechanism is monotone.

Saks and Yu [21] proved that monotonicity is also a sufficient condition,
for the combinatorial auctions setting with convex valuations (i.e. there exist
payments that can make a monotone algorithm into a truthful mechanism).

5 Also known as weakly monotone.



For the one-parameter case, i.e., when every agent has a single value to
declare (e.g., the speed of her machine), Myerson [19] (for auction setting) and
Archer and Tardos [4] (for scheduling setting), showed that the monotonicity of
the (allocation) algorithm is a necessary and sufficient condition for the existence
of a truthful payment scheme. In this case they also provide an explicit formula
for the payments. In their theorem cited below, the notion of a decreasing output
function, corresponds to a monotone algorithm in the one-parameter setting.

Theorem 2. [19, 4] The output function admits a truthful payment scheme if
and only if it is decreasing. In this case the mechanism is truthful if and only if
the payments pi(bi, b−i) are of the form

hi(b−i) + bixi(bi, b−i)−
∫ bi

0

xi(u, b−i) du

where the hi are arbitrary functions.

3 Lower Bound for Truthful Mechanisms

Here we will give a lower bound on the approximation ratio of any fractional
truthful mechanism.

Theorem 3. There is no deterministic truthful mechanism that can achieve an
approximation ratio better than 2− 1

n , where n is the number of the machines.

Proof. Let t be the actual time matrix of the players as below

tij =

 0, j = i
1, j = n + 1
A, otherwise

and x = x(t) be the corresponding allocation that a truthful mechanism M =
(x, p) gives with respect to t. For significantly large values of A, player i gets
substantially the whole portion of task i, otherwise the approximation ratio is
high, e.g., for A = 2

δ , every player i should get a portion greater than 1−(n−1)δ,
otherwise the approximation ratio is at least 2.

Clearly, there is a player k ∈ [n], with xkn+1 ≥ 1
n . Now let’s consider how

the allocation algorithm of the mechanism behaves if the following time matrix
is given as input

t′ij =


1

n−1 , i = k, j = i

1− ε, i = k, j = n + 1
tij , otherwise

The following claim states that due to monotonicity, the mechanism cannot
assign to player k a substantially smaller portion of the n + 1st task than 1

n .

Claim. If xkn+1 ≥ 1
n , then for the allocation x′ = x(t′) on input t′ it holds that

x′kn+1 ≥ 1
n − ε.



Proof. Due to Theorem 1 we have that for every player i ∈ [n], it holds that∑
j∈[m]

(tij − t′ij)(xij − x′ij) ≤ 0

and by applying this to the k-th player we get

(
0− 1

n− 1

)
(xkk − x′kk) + (1− 1 + ε)(xkn+1 − x′kn+1) ≤ 0,

from which we get

x′kn+1 ≥ xkn+1 +
x′kk − xkk

ε(n− 1)
≥ xkn+1 −

δ

ε
≥ 1

n
− δ

ε

and for δ = ε2 we finally obtain

x′kn+1 ≥
1
n
− ε

ut

On the other hand, an optimal allocation x∗ for t′ is

x∗ij =


1, j = i
0, i = k, j = n + 1

1
n−1 , i 6= k, j = n + 1

0, otherwise

with makespan 1/(n− 1), while the mechanism gives player k a total load of at
least

(1− (n− 1)δ)
1

n− 1
+
(

1
n
− ε

)
(1− ε) >

1
n− 1

+
1
n
− δ − ε

(
n + 1

n

)
.

For arbitrary small ε, this finally gives an approximation ratio of at least 2− 1
n .

ut

4 The Truthful Mechanism

We describe a truthful mechanism, called Square, for the fractional scheduling
problem, with approximation ratio 1+ n−1

2 . On two machines this ratio becomes
3/2, so in this case Square has the best possible worst case ratio w.r.t. truthful
mechanisms. Furthermore, in Section 5 we will show that for arbitrary number
of machines, our mechanism is optimal among the so called task-independent
algorithms.

Next, we define the mechanism Square= (xSq, pSq)6. Recall that bij is the
reported value for tij , the actual execution time of task j on machine i.

6 In most of the section we will omit the superscripts Sq.



Definition 2 (The mechanism Square= (xSq, pSq)).

Allocation algorithm: Let bj = (b1j , b2j , . . . , bnj)T be the jth column-vector
of the input matrix. If bj has at least one zero coordinate, then Square dis-
tributes the jth task among machines having zero execution time arbitrarily.
If bij 6= 0 (i ∈ [n]), then the fraction of the jth task allocated to machine i is

xSq
ij (b) = xij(b) =

∏
k 6=i b2

kj∑n
l=1

∏
k 6=l b

2
kj

. (1)

Payment scheme: Let the constants cij be defined as

cij =

∏
k 6=i bkj√∑

l 6=i

∏
k 6=l,i b2

kj

,

then the payments pSq = (p1, . . . , pn) to the agents are

pi(b) =
m∑

j=1

(
bij ·

c2
ij

b2
ij + c2

ij

+ cij ·
π

2
− cij arctan

bij

cij

)
.

The algorithm xSQ of Square allocates the tasks individually (indepen-
dently), and so that the assigned fractions of a task are inversely proportional
to the squares of (declared) execution times w.r.t. each machine. For instance,
for two machines (1) boils down to

x1j =
b2
2j

b2
1j + b2

2j

; x2j =
b2
1j

b2
1j + b2

2j

.

For arbitrary n it is obvious that 0 ≤ xij ≤ 1, and
∑n

i=1 xij = 1. It is easy to see
that Square is monotone: Let the input matrix b be changed only on the ith row,
that is, for any fixed task j, just the entry bij may change. Assume first that in
the column-vector bj all execution times are nonzero. Observe that the variable
bij appears only in the denominator of the expression (1), namely as b2

ij , having a
positive coefficient. Thus, xij does not increase when bij increases, and vice versa.
It is easy to see that the same holds if in bj there are zero entries other than bij ,
and similarly, if bij was, or just became the only zero entry. Thus, we obtained
that for every single one-parameter problem bj , the assignment is monotone, and
this, in turn, implies weak monotonicity (see Definition 1) for xSq.

Now consider pSq. For two machines, the constant cij is simply the bid of the
other machine for this job, that is, c1j = b2j and c2j = b1j . For more machines,
cij would be the ’bid’ of a single other machine, if we replaced the machines
[n]\{i} with one machine. The payment pi(b) is simply defined to be the sum
of the payments that agent i would get for performing each (fractional) task
independently, as determined for truthful mechanisms for one-parameter agents
by Theorem 2:

pi(bi, b−i) = hi(b−i) + bixi(bi, b−i)−
∫ bi

0

xi(u, b−i) du .



Here the hi(b−i) are arbitrary constants. If we want that the so called voluntary
participation [4] of the players is ensured (i.e., it is worth taking part in the
game), then hi can be chosen to be hi =

∫∞
0

xi(u, b−i) du, so that finally we get

pi(bi, b−i) = bixi(bi, b−i) +
∫ ∞

bi

xi(u, b−i) du ,

for the one-parameter case. Applying this formula for each task, we obtain the
above definition of the payments.

Theorem 4. The mechanism Square is truthful.

Proof. To put it short, the theorem follows from the fact that Square is the sum
of m truthful mechanisms for the one-parameter problem (note that the total
execution time (load), the total payment, thus also the total utility is the sum of
the respective amounts for the single tasks). For each j, the mechanism (xj , pj) is
truthful, since xj is a monotone algorithm, and we defined pj = (p1j , . . . , pnj)T

according to Theorem 2. We do not include an elementary proof here. ut

Approximation Ratio. Let Squ(t) be the makespan of the schedule produced
by Square on input t, and Opt(t) denote the optimum makespan. In what
follows, we show that Squ(t)/Opt(t) ≤ 1 + n−1

2 for any matrix t. The next
lemma will largely simplify the upper-bound proof. The proof of the lemma is
omitted.

Lemma 1. If there exists an input instance t, such that Squ(t)/Opt(t) = α,
then there also exists an instance t∗, for which Squ(t∗)/Opt(t∗) = α, moreover
there is an optimal allocation of t∗ that does not split any job.

Theorem 5. For the approximation ratio of Square, Squ(t)
Opt(t) ≤ 1 + n−1

2 holds,
where n denotes the number of machines, and t is an arbitrary set of input tasks.

Proof. Consider the input t. Due to Lemma 1, we can assume that the (indices
of) tasks are partitioned into the sets J1, J2, . . . , Jn, so that there is an optimal
allocation Opt where job tj is allocated completely to machine i, if and only if
j ∈ Ji. We can also assume that tij > 0 for all i and j. Otherwise we would have
a job that adds zero execution time to the makespan in both the allocation of
Square, and of Opt, and removing this job from the input would not affect the
approximation ratio. For the optimum makespan it holds that

Opt(t) = max
i∈[n]

∑
j∈Ji

tij . (2)

For the running time of an arbitrary machine i in Square, we have

Squi(t) =
n∑

r=1

∑
j∈Jr

xij(t)tij ,



where the xij(t) are defined by (1). We decompose the above expression as
follows:

Squi(t) =
∑
j∈Ji

xijtij +
∑
r 6=i

∑
j∈Jr

xijtij .

We can upper bound the first sum using (2), and the fact that xij ≤ 1 :∑
j∈Ji

xijtij ≤
∑
j∈Ji

1 · tij ≤ Opt(t) .

Next we upper bound every sum of the form
∑

j∈Jr
xijtij (r 6= i), by 1

2 ·Opt(t).
Since there are n− 1 such sums, this will prove that

Squi(t) ≤ Opt(t) + (n− 1) · 1
2
·Opt(t) = (1 +

n− 1
2

) ·Opt(t) .

Since i was an arbitrary machine, eventually this implies

Squ(t) = max
i∈[n]

Squi(t) ≤ (1 +
n− 1

2
) ·Opt(t) .

The bound
∑

j∈Jr
xijtij ≤ 1

2 ·Opt(t) can be shown as follows:

∑
j∈Jr

xijtij =
∑
j∈Jr

∏
k 6=i t2kj∑n

l=1

∏
k 6=l t

2
kj

· tij =
∑
j∈Jr

tijtrj

∏
k 6=i,r t2kj∑n

l=1

∏
k 6=l t

2
kj

· trj =

=
∑
j∈Jr

tijtrj

t2ij + t2rj +
∑

l 6=i,r t2ijt
2
rj/t2lj

trj ≤
∑
j∈Jr

tijtrj

t2ij + t2rj

trj ≤
∑
j∈Jr

1
2
trj ≤

1
2
Opt(t),

where the inequality tijtrj

t2ij+t2rj
≤ 1

2 holds for any two nonzero real numbers; the

last inequality is implied by (2). ut

Corollary 1. For two machines the truthful mechanism Square has approx-
imation ratio 3/2, which is the best worst case ratio we can expect from any
truthful mechanism for the fractional scheduling problem.

5 Lower Bound for Independent Algorithms

In this section we prove a lower bound of 1 + n−1
2 for the worst case ratio of

independent fractional algorithms. An algorithm is independent, if it allocates
the tasks independently of each-other, or formally:

Definition 3. An allocation algorithm x is called task-independent, or simply
independent, if the following holds: If t and t′ are two n × m input matrices,
such that for the jth task tij = t′ij (∀i ∈ [n]), then for this task it also holds that
xij = x′ij (∀i ∈ [n]).



It is remarkable, that the currently known best mechanisms (in fact, any
’reasonable’ mechanism we know of) are all independent, in the integral, the
randomized, and the fractional case. It is not difficult to come up with inde-
pendent (suboptimal) algorithms, which are also weakly monotone. However it
seems to be an intriguing question, whether there exist non-inependent, and still
monotone algorithms having better approximation ratio than the best indepen-
dent ones. We note that in the integral case it is easy to construct an instance
with n machines and n2 tasks, that proves a lower bound of n (i.e., tight bound)
for independent algorithms.

Theorem 6. If x is an independent fractional allocation algorithm for the un-
related machines problem, then it has approximation ratio of at least 1 + n−1

2 ,
where n denotes the number of machines.

Proof. In order to obtain the lower bound, consider the following input matrix
with n ≥ 2 machines and m = 1+

(
n
2

)
tasks. The first task is numbered by j = 0;

furthermore, for all
(
n
2

)
possible pairs of machines g < h there is a task jgh :

tij =

 0, j = 0
1, j = jgh, i ∈ {g, h}
A, otherwise

Obviously, by setting A large enough, we can make it sure – like in the proof
of Theorem 3 – that the corresponding share of a player of a certain task is
arbitrarily small, otherwise the approximation ratio gets too large. That is, we
can assume that the bulk of any job is allocated to the machines having execution
time 1 for this job.

Let us consider an arbitrary independent algorithm x. Observe that no matter
how x allocates the above tasks, the total running time of all the jobs cannot be
less than

(
n
2

)
. Thus, there exists a machine, say machine k, with running time

at least
(
n
2

)
/n = n−1

2 . Now we modify the instance t to t′ : we keep the original
execution times of tasks that had running time 1 on machine k, and zero out all
other tij ; furthermore, task 0 will now have execution time 1 on machine k, and
A on other machines.

t′ij =


1, j = 0, i = k
A, j = 0, i 6= k,
tij , j = jgh and g = k or h = k
0, otherwise

As noted above, on instance t at least n−1
2 −ε running time on machine k was

due to jobs that have execution time 1 on this machine. Since x is independent,
on instance t′ the machine gets the same allocation over these jobs, and also gets
a (1− ε) fraction of job 0, achieving a running time of at least 1+(n−1)/2−2ε,
for any ε > 0. On the other hand, it is clear that the optimal allocation has
makespan 1. ut

Corollary 2. The mechanism Square has optimal approximation ratio among
all independent mechanisms.



One can show that among all allocations where the distribution of task j is
inversely proportional to (tα1j , t

α
2j , . . . , t

α
nj) for some α > 0, the above optimal

approximation ratio is obtained if and only if α = 2.

References

1. N. Andelman, Y. Azar, and M. Sorani. Truthful approximation mechanisms for
scheduling selfish related machines. In STACS, pages 69–82, 2005.

2. A. Archer. Mechanisms for Discrete Optimization with Rational Agents. PhD
thesis, Cornell University, January 2004.

3. A. Archer, C. H. Papadimitriou, K. Talwar, and É. Tardos. An approximate truth-
ful mechanism for combinatorial auctions with single parameter agents. In SODA,
pages 205–214, 2003.

4. A. Archer and É. Tardos. Truthful mechanisms for one-parameter agents. In
FOCS, pages 482–491, 2001.

5. M. Babaioff, R. Lavi, and E. Pavlov. Mechanism design for single-value domains.
In AAAI, pages 241–247, 2005.

6. Y. Bartal, R. Gonen, and N. Nisan. Incentive compatible multi unit combinatorial
auctions. In TARK, pages 72–87, 2003.

7. S. Bikhchandani, S. Chatterji, R. Lavi, A. Mu’alem, N. Nisan, and A. Sen.
Weak monotonicity characterizes deterministic dominant strategy implementation.
Econometrica, 74(4):1109–1132, 2006.

8. P. Briest, P. Krysta, and B. Vöcking. Approximation techniques for utilitarian
mechanism design. In STOC, pages 39–48, 2005.

9. G. Christodoulou, E. Koutsoupias, and A. Vidali. A lower bound for scheduling
mechanisms. In SODA, pages 1163–1170, 2007.

10. S. Dobzinski, N. Nisan, and M. Schapira. Approximation algorithms for combina-
torial auctions with complement-free bidders. In STOC, pages 610–618, 2005.

11. S. Dobzinski, N. Nisan, and M. Schapira. Truthful randomized mechanisms for
combinatorial auctions. In STOC, pages 644–652, 2006.

12. H. Gui, R. Müller, and R. V. Vohra. Dominant strategy mechanisms with multi-
dimensional types. In Computing and Markets, 2005.

13. A. Kovács. Fast monotone 3-approximation algorithm for scheduling related ma-
chines. In ESA, pages 616–627, 2005.

14. A. Kovács. Fast Algorithms for Two Scheduling Problems. PhD thesis, Universität
des Saarlandes, 2007.

15. R. Lavi, A. Mu’alem, and N. Nisan. Towards a characterization of truthful com-
binatorial auctions. In FOCS, pages 574–583, 2003.

16. R. Lavi and C. Swamy. Truthful and near-optimal mechanism design via linear
programming. In FOCS, pages 595–604, 2005.

17. J.K. Lenstra, D.B. Shmoys, and É. Tardos. Approximation algorithms for schedul-
ing unrelated parallel machines. Mathematical Programming, 46(1):259–271, 1990.

18. A. Mu’alem and M. Schapira. Setting lower bounds on truthfulness. In SODA,
pages 1143–1152, 2007.

19. R. B. Myerson. Optimal auction design. Mathematics of Operations Research,
6(1):58–73, 1981.

20. N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic
Behavior, 35:166–196, 2001.

21. M. E. Saks and L. Yu. Weak monotonicity suffices for truthfulness on convex
domains. In EC, pages 286–293, 2005.


